
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INVESTIGATING SELF-ATTENTION: ITS IMPACT ON
SAMPLE EFFICIENCY IN DEEP REINFORCEMENT
LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Improving the sample efficiency of deep reinforcement learning (DRL) agents has
been an ongoing challenge in research and real-world applications. Self-attention,
a mechanism originally popularized in natural language processing, has shown
great potential in enhancing sample efficiency when integrated with traditional
DRL algorithms. However, the impact of self-attention mechanisms on the sam-
ple efficiency of DRL models has not been fully studied. In this paper, we ponder
the fundamental operation of the self-attention mechanism in visual-based DRL
settings and systematically investigate how different types of scaled dot-product
attention affect the sample efficiency of the DRL algorithms. We design and eval-
uate the performance of our self-attention DRL models in the Arcade Learning
Environment. Our results suggest that each self-attention module design has a
distinct impact on the sample complexity of the DRL agent. To understand the
influence of self-attention modules on the learning process, we conduct an inter-
pretability study focusing on state representation and exploration. From our initial
findings, the interplay between feature extraction, action selection, and reward col-
lection is influenced subtly by the inductive biases of the proposed self-attention
modules. This work contributes to the ongoing efforts to optimize DRL architec-
tures, offering insights into the mechanisms that can enhance their performance in
data-scarce scenarios.

1 INTRODUCTION

Deep reinforcement learning (DRL) (Arulkumaran et al., 2017; Li, 2017; François-Lavet et al., 2018)
is a branch of machine learning (Jordan & Mitchell, 2015) that combines the art of decision-making
of reinforcement learning (RL) (Sutton, 2018) with the representation learning capabilities of deep
neural networks (Goodfellow et al., 2016). It has made tremendous progress in advancing AI for
its ability to solve complex sequential decision-making problems that traditional algorithms strug-
gle with, especially in environments with high-dimensional sensory inputs and where the optimal
solutions are unknown or difficult to model explicitly. This makes DRL particularly well-suited for
tasks like robotics (Morales et al., 2021; Ibarz et al., 2021), game-playing (Mnih, 2013; Mnih et al.,
2015; Silver et al., 2018; Vinyals et al., 2019), autonomous vehicles (Kiran et al., 2021), healthcare
(Yu et al., 2021), and financial markets (Hu & Lin, 2019; Hambly et al., 2023), where agents must
learn and adapt from experience without being directly programmed with rules. However, one of
the key challenges in DRL is sample inefficiency (Yu, 2018; Yarats et al., 2021). DRL algorithms
often require an extensive amount of interactions with the environment to learn effectively, making
them computationally expensive and time-consuming. In real-world applications, especially where
data collection is costly or time-constrained (e.g., robotics or medical treatments), this inefficiency
becomes a major bottleneck. Addressing the sample inefficiency issue is crucial to improving the
practicality and scalability of DRL algorithms, driving research into methods that can enhance learn-
ing efficiency with fewer training samples.

State-of-the-art approaches to improve sample efficiency in DRL focus on several strategies, includ-
ing sample reuse such as experience replay (Fedus et al., 2020) and prioritized experience replay
(Schaul, 2015), model-based reinforcement learning (Kaiser et al., 2019; Schrittwieser et al., 2020;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Hafner et al., 2020; Schwarzer et al., 2020; Micheli et al., 2022; Kapturowski et al., 2022; Moerland
et al., 2023), transfer learning (Spector & Belongie, 2018; Yang et al., 2021; Liu et al., 2021; Zhu
et al., 2023), meta-learning (Sung et al., 2017; Liu et al., 2019; Rakelly et al., 2019; Franke et al.,
2020; Beck et al., 2023), and leveraging advanced neural network architectures (Chen et al., 2021;
Schwarzer et al., 2023). Recently, self-attention mechanisms (Vaswani, 2017), commonly used in
natural language processing (like in Transformers (Han et al., 2022)), have been applied to DRL
to enhance sample efficiency (Manchin et al., 2019; Shen et al., 2019; Hu et al., 2019; Chen et al.,
2020; Fernandes et al., 2023). While most of the existing approaches focus on integration techniques
of self-attention in DRL, we ponder the fundamental question of how the scaled dot-product atten-
tion proposed in the original Transformer (Vaswani, 2017) can be optimally devised for visual-based
DRL tasks. Specifically, we take a closer look at how applying dot product over different dimensions
of the query, key, and value tensors affects the sample efficiency of the DRL algorithms.

In this work, we focus on investigating the underlying operation of the self-attention mechanism
and its impact on sample efficiency by designing various self-attention modules and evaluating them
with a baseline RL algorithm in the Arcade Learning Environment (ALE) (Bellemare et al., 2013;
Machado et al., 2018). Our results indicate that each self-attention module influences the agent’s
learning process differently, driven by its unique inductive bias (Baxter, 2000; Utgoff, 2012; Goyal &
Bengio, 2022). Furthermore, we perform an interpretability study to provide better insights into how
various self-attention modules influence sample efficiency through the lens of state representation
and exploration. Our initial observations suggest that self-attention modules can introduce artifacts
that subtly impact the agent’s learning process. We picture the proposed self-attention modules in
Section 4, illustrate the experiment setup, and present the main results in Section 5.

2 RELATED WORK

In the field of DRL, improving sample efficiency has been a critical research focus. Most re-
cent works try to tackle the sample efficiency challenge via model-based RL (Hafner et al., 2020;
Schwarzer et al., 2020; Micheli et al., 2022; Kapturowski et al., 2022) where agents build a model
of the environment to simulate interactions, reducing the need for actual interactions. Although
model-based RL has made significant progress in lowering the sample complexity, it comes with
notable limitations such as model inaccuracy, high computational cost, and limited applicability in
real-world environments (Doll et al., 2012; Clavera et al., 2018; Pong et al., 2018).

Considering the limited literature on improving sample efficiency through self-attention, we focus on
the most relevant research related to our study in this section. In Manchin et al. (2019)’s work, self-
attention has been integrated with the Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) to address the sample complexity issue and has shown great potential in setting new
state-of-the-art results in the ALE benchmark. Specifically in the context of ALE, the input sequence
is a stack of images, and the query, key, and value are generated by applying a 1× 1 Convolutional
Neural Network (CNN) kernel over the feature maps of the first CNN layer. The scaled dot-product
attention is then computed between the query, key, and value to generate the attention maps. The
attention maps are then element-wise summed with the feature maps from the first CNN layer before
being passed to the second CNN layer. The work further explored various ways of integrating the
self-attention block and evaluated their performances over 40 million time steps across 10 games
using 3 random seeds. Our work differs from it in multiple perspectives. Firstly, we focus on the
fundamental operation of self-attention in terms of the dimensions where the scaled dot-product
should be applied. Secondly, we evaluate our proposed self-attention agents over 10 million time
steps across 56 games with 5 runs per game. Thirdly, we provide insights into how self-attention
influences the agent’s learning process in terms of state representation and exploration with the
consideration of the inherent inductive biases of the self-attention modules.

3 PRELIMINARIES

3.1 PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a model-free, policy gradient RL
algorithm that has become the de facto choice for many RL tasks due to its data efficiency, reliability,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and scalability. It builds upon the TRPO algorithm (Schulman, 2015) with the key improvement of
enabling multiple epochs of minibatch updates. PPO is typically implemented using an actor-critic
framework where the actor is the policy network that selects actions and the critic is the value
network that estimates the value of a state or state-action pair. The critic helps guide the actor by
providing more accurate value estimates, improving learning efficiency. To encourage exploration,
PPO often includes an entropy term in the objective. Higher entropy indicates more randomness
in the agent’s action selection, which can prevent premature convergence to suboptimal policies.
Considering PPO’s general advantages over other RL algorithms, we choose PPO as the baseline
agent for evaluating the performance of our proposed self-attention modules.

3.2 SELF-ATTENTION

The self-attention mechanism is a core component in many modern neural networks, particularly in
architectures like the Transformer (Vaswani, 2017), and it is widely used in tasks such as natural lan-
guage processing (NLP), computer vision, and more recently, reinforcement learning. Self-attention
(a.k.a. intra-attention) refers to the mechanism where a sequence element attends to other elements
within the same sequence. It computes relationships between all pairs of elements in the sequence,
allowing the model to capture dependencies regardless of the distance between them. Specifically,
the self-attention proposed in the Transformer is termed the scaled dot-product attention which is
the primary focus of this paper. We outline the mathematical formulation of the scaled dot-product
attention in the context of NLP as follows.

• For each input element in a sequence, generate the query, key, and value vectors as q,k,v
with the key vector having the dimension of dk

• For the entire sequence, pack all the queries, keys, and values into matrices as Q,K,V

• Compute the attention scores matrix as Attention(Q,K,V ) = softmax(
QKT

√
dk

)V

It is important to note the differences between the self-attention formulation in the general NLP
settings (like the one defined here) and the self-attention formulation proposed by Manchin et al.
(2019). The fundamental difference lies in how query, key, and value are generated and those 3
components are no longer represented as matrices but as 3D tensors in the latter case. This key
change in the representation of the query, key, and value catalyzes the core direction of our research.

4 DESIGN OF SELF-ATTENTION MODULES

Inspired by Manchin et al. (2019)’s work, we embark on a study to explore the impact of various
forms of scaled dot-product attention on the sample efficiency of the PPO algorithm. As depicted in
Figure 1, each self-attention module encircled by the dashed line is positioned between the first and
the second CNN layers within the state representation block (a.k.a. feature extractor) of the PPO
framework. The key reason for placing the self-attention module at such a location is to enhance
computational efficiency and preserve interpretability. To shed more light on this, positioning the
self-attention module before the first CNN layer would result in higher computational costs due to
the high dimensionality of raw observations, and placing it after the second CNN layer would reduce
interpretability, as features become more abstract at this stage.

Zooming into each self-attention module, the query Q, key K, and value V tensors are generated
individually by applying a 1 × 1 CNN kernel over the feature maps F1 at the first CNN layer H1.
As a result, the dimensions of Q, K, and V match those of F1, including the channel, row (height),
and column (width) dimensions. We vary the design of self-attention modules by permuting the
dimensions of the query, key, and value tensors, allowing the scaled dot-product attention to be
applied across different dimensions. We designate the proposed self-attention modules according to
the dimensions over which the dot product is performed. For simplicity, we omit the term “self”
from “self-attention” for all modules.

• Spatial-wise-Attention (SWA): dot product is applied over the row and column dimensions
and repeated along the channel dimension

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

CNN Layer H1 CNN Layer H2 StateObservations

Self-Attention 
Module

Skip Connection

෠𝑌

1x1 CNN Layer

𝑄

𝐾

𝑉

𝑌

SWA
1x1 CNN Layer

𝑄

𝐾

𝑉

𝑌

CWRA
1x1 CNN Layer

𝑄

𝐾

𝑉

𝑌

CWCA

CWRA

CWCA

CWRCA

row (height)

Element-wise SumScaled Dot-Product Attention Permute(batch, width, height, channel) Permute(batch, height, width, channel)

𝐹1
෢𝐹1

𝐹1 𝐹1 𝐹1 𝐹1

෢𝑌𝑅

෢𝑌𝐶

෠𝑌

Figure 1: Design of self-attention modules. Each self-attention module enclosed by the dashed
lines is placed between the first and the second CNN layers within the state representation block of
the PPO’s network architecture. The query Q, key K, and value V tensors are generated individually
by applying a 1 × 1 CNN kernel over the feature maps F1 produced at the first CNN layer H1.
Specifically in CWRA and CWCA, the order of the dimensions of the query, key, and value tensors
is permuted such that the scaled dot-product attention is applied over different dimensions. The
outputs of SWA, CWRA, and CWCA labeled as Y are subsequently reshaped into Ŷ which has the
same shape as the feature maps F1 before the element-wise summation. Particularly in CWRCA,
the outputs of CWRA and CWCA are reshaped into ŶR and ŶC respectively (both having the same
shape as F1) before being summed. The attended feature maps F̂1 produced by the sum of F1 and
Ŷ are then passed to the second CNN layer H2 for state representation. The complete network
architecture of PPO is presented in Appendix A.

• Channel-wise-Row-Attention (CWRA): dot product is applied over the channel and row
dimensions and repeated along the column dimension

• Channel-wise-Column-Attention (CWCA): dot product is applied over the channel and
column dimensions and repeated along the row dimension

• Channel-wise-Row-Column-Attention (CWRCA): this is simply the element-wise sum of
the outputs of CWRA and CWCA

Note that the permutation operation is done before and after the scaled dot-product attention in
CWRA and CWCA modules where the post-permutation (i.e., reshaping of Y into Ŷ) ensures that
the final attention maps Ŷ are compatible with the feature maps F1 before the element-wise sum-
mation. For ease of comparison, we denote the baseline PPO algorithm as NA which stands for
No-Attention and illustrate its architecture in Appendix A. We argue that each self-attention module
has its own inductive bias when integrated with the baseline algorithm and plays a distinct role in
the RL feedback loop. In the context of ALE, every environment has its unique game mechanics.
We believe that whether the inductive bias of the self-attention module would enhance or impair
learning is highly dependent on the game mechanics of the environment. For example, the CWRA
module assumes attending features lie in the channel, and the row dimensions could benefit the
agent’s learning. In other words, agents equipped with the CWRA module could learn faster in
games with rewarding objects moving along the column dimension, i.e., larger variance or higher
degree of dynamics exist in the horizontal direction of the game screen. On the contrary, agents
equipped with the CWCA module may learn faster in games with rewarding objects moving along
the row dimension, i.e., larger variance or higher degree of dynamics present in the vertical direction
of the game screen. We highlight the observations that generally support this belief in Section 5.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

This section documents the experiment’s setup, presents the main results, and discusses the key
findings.

5.1 EXPERIMENT SETUP

To assess the impact of the proposed self-attention modules on sample efficiency, we compare the
performance of self-attention-enabled agents with that of a baseline agent using the well-established
ALE benchmark. Specifically, each agent is trained for 10 million time steps across 56 games with
5 random seeds using the RL Baselines3 Zoo v2.0.0 (Raffin, 2020; Raffin et al., 2021) training
framework. We detail the hyperparameters used in Appendix B for reproducibility.

5.2 RESULTS AND ANALYSIS

Evaluation Methodology We follow the best practices recommended by Agarwal et al. (2021)
for reliable evaluation of the agent’s performance. In particular, we report performances with 95%
stratified bootstrap confidence intervals (CIs) based on human normalized scores (HNS). To compute
HNS, we obtain the performance of a random agent score random and the performance of an
averaged human player score human from Badia et al. (2020) and normalize the performance of

our agents score agent using HNS =
score agent− score random

score human− score random
. In addition, we use the

mean evaluation score over the entire evaluation period instead of the last evaluation score for score
normalization and stratified bootstrapping. The reason is twofold: 1) The mean evaluation score
over the entire evaluation period favors sample efficiency whereas the last evaluation score favors
the final performance; 2) Using the mean evaluation score over the entire evaluation period for
stratified bootstrapping generally results in smaller CIs than those generated using the last evaluation
score. Since all agents share the same underlying algorithm (PPO) and differ only in their feature
extractors (particularly the self-attention modules), we anticipate minor performance variations due
to the stratified bootstrapping process. Backed by the no-free-lunch theorem (Wolpert et al., 1995;
Wolpert & Macready, 1997; Baxter, 2000), we present evaluation results using the sample mean and
standard error per game to better illustrate the impact of each self-attention module’s inductive bias
within specific game environments. To reduce statistical uncertainty, the mean evaluation score over
the entire evaluation period is used to calculate the sample mean and standard error.

0.30 0.36 0.42 0.48
NA

SWA
CWRA
CWCA

CWRCA
Median

0.39 0.42 0.45 0.48

IQM

1.44 1.52 1.60 1.68

Mean

0.510 0.525 0.540 0.555

Optimality Gap

Human Normalized Score

Figure 2: Aggregate performance (Agarwal et al., 2021). The median, interquartile mean (IQM),
mean, and optimality gap based on human normalized scores (HNS) of each agent are shown with
95% stratified bootstrap confidence intervals (CIs) from left to right. We focus on the IQM and
optimality gap in favor of their robustness and statistical efficiency. Although most CIs overlap
under each metric, the CWCA agent achieved a higher IQM score and a lower optimality gap, and
the CWRCA agent showed lower overall performance across all metrics.

Overall Performance with Stratified Bootstrap CIs The aggregate performance, sample effi-
ciency curves, and performance profiles of all the agents are depicted in Figure 2, 3a, and 3b re-
spectively. The average probability of improvement between any of the two agents can be found in
Appendix C. In general, we observe relatively small differences in agents’ performances, likely due
to the shared baseline algorithm used across designs. This implies that the proposed self-attention
models and the baseline model have similar overall performance when all 56 games are considered.
Nevertheless, the CWCA agent exhibits slightly better performance in terms of IQM (the higher the
better), optimality gap (the smaller the better), and sample efficiency (the higher the better) whereas
the CWRCA agent demonstrates relatively inferior performance in terms of all evaluation metrics.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Timesteps (in Million)

0.1

0.2

0.3

0.4

0.5

0.6

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e NA

SWA
CWRA
CWCA
CWRCA

(a) Sample efficiency curves

0 1 2 3 4 5 6 7 8
Human Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>
τ

NA
SWA
CWRA
CWCA
CWRCA

1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25

(b) Performance profiles

Figure 3: Sample efficiency curves (left) and performance profiles (right) (Agarwal et al., 2021).
Sample efficiency of the agents is represented using IQM human normalized scores at selected time
steps over the entire evaluation period. Shaded regions show point-wise 95% stratified bootstrap
CIs. The CWCA agent demonstrated slightly higher sample efficiency, consistent with its IQM
performance as presented in Figure 2. The performance profiles are plotted based on score distribu-
tions. Although the score distributions of all agents look similar at first glance, the profiles intersect
at multiple points where τ ∈ [1, 4] which implies that there is no stochastic dominance among all
agents. In other words, each agent could perform differently in different games.

Another observation from the performance profiles highlights the performance delta among agents
over a specific range of HNS thresholds (i.e., τ ∈ [1, 4]). We argue that although the stratified boot-
strapping process aims to provide more reliable evaluation results by accounting for uncertainty in
the few-run regime (Agarwal et al., 2021), it could fade the manifestation of agents’ unique charac-
teristics in specific games, such as their inductive biases. This is likely true in our context where all
agents share the same underlying learning mechanism, i.e., the PPO backbone.

Inductive Biases and Game Mechanics In the pursuit of discovering the effect of inductive
biases of the proposed self-attention modules, we include the performance of the agent per game
in Appendix D. For each game, we compute the sample mean and standard error using the mean
evaluation score over the entire evaluation period across 5 runs. Based on the highest sample mean,
we select the winning agent per game and summarize the list of games won by each agent. Since
there is no quantitative way to measure the game mechanics and the inductive biases of the self-
attention modules, we intend to correlate these two concepts in an empirical and heuristic manner.
For each self-attention-enabled agent, we choose the game where the agent exhibits a relatively
higher winning margin in terms of the sample mean and a relatively lower standard error as the
representative game to study the relationship between the inductive bias of the self-attention module
and the game mechanics. We present the list of the representatives in Figure 4 and the complete list
of games won by each agent in Appendix E.

Tennis ChopperCommand Zaxxon Hero

Figure 4: Inductive biases and game mechanics. The representative games selected for the SWA,
CWRA, CWCA, and CWRCA agents are shown from left to right.

Tennis can be considered as a fully observable game (Kapturowski et al., 2022) with most of the
features and dynamics available in the spatial domain, i.e., the row and column dimensions, and has
a relatively static background (lower dynamics in the channel dimension). We hypothesize that the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

SWA module could ‘exploit’ its inductive bias more naturally in the Tennis environment to obtain
higher rewards. ChopperCommand is a horizontally scrolling shooter. We observe that both the
chopper and the targets are mostly moving horizontally which could be ‘leveraged’ by the CWRA
module with its inherent attention over the channel and row dimensions. In contrast to ChopperCom-
mand, Zaxxon is a vertically scrolling shooter. The vertical movements of the spaceship, targets,
and fortresses could be ‘taken advantage of’ by the inductive bias of the CWCA module. As for the
CWRCA module, intuitively, it could ‘combine’ the strengths of both CWRA and CWCA modules.
Albeit having the most complex design, it excels in the game of Hero where the rescuer traverses
down a mineshaft avoiding enemies and hazards, and destroying walls to rescue trapped miners.
Heuristically, Hero is a highly exploratory game that demands attention or curiosity in all directions.
We conjecture that the CWRCA module could encourage exploration by creating state representa-
tion with high entropy (Vuckovic et al., 2020; Zhao et al., 2021). We show some observations that
could underpin this hypothesis in Section 5.3.

(a) The Pong game

S
co
re

Timesteps (in Million)

3

(b) Learning curves in Pong

Figure 5: The Pong game (left) and the learning curves in Pong (right). For learning curves, solid
lines represent the mean performance, and the shaded regions indicate the 95% confidence intervals
across 5 runs. Model checkpoints are selected at the 3 million time step for interpretability study.

5.3 INTERPRETABILITY STUDY

To further understand how self-attention modules influence the sample efficiency of the baseline
algorithm, we suggest interpreting the inner workings of the self-attention mechanisms from the
perspectives of state representation and exploration. Without loss of generality, we selected the
Pong game for our initial case study for the following reasons.

• Pong has a simple state space where the game features two paddles (left and right), a ball,
and two walls (top and bottom) as shown in Figure 5a. The Pong game simulates table
tennis where the left paddle is manipulated by the game emulator and the right paddle is
controlled by a learning agent. Having a simple state space, features or artifacts created by
the self-attention modules could be spotted easily.

• Pong also has a relatively small action space with a total of 6 default actions, namely,
‘NOOP’ (no operation, do nothing), ‘FIRE’, ‘RIGHT’ (move the paddle up), ‘LEFT’ (move
the paddle down), ‘RIGHTFIRE’, and ‘LEFTFIRE’. Specifically in Pong, ‘FIRE’ has the
same effect as ‘NOOP’, ‘RIGHT’ is equivalent to ‘RIGHTFIRE’, and ‘LEFT’ is equivalent
to ‘LEFTFIRE’. This further reduces the action space to 3 distinctive actions which could
ease our analysis.

• In addition, the learning curves depicted in Figure 5b exhibit a clear separation among
agents, especially between the CWCA and the rest of the agents. We believe that the more
distinguishable the learning curves, the larger the distinction in agents’ state representations
and behaviors. Under this assumption, we select the model checkpoint at the 3 million time
step (indicated by the dashed line) where we observe a relatively large variation in agents’
performances. For each agent, we pick the saved model from a specific run whose learning
curve resembles its mean performance the most and use that saved model to reproduce the
agent’s behaviors at that particular checkpoint. We summarize the learning curves of all
games in Appendix F.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Observations (4 Frames)

Heatmaps at the First CNN Layer

Attended Feature Maps

Heatmaps at the Second CNN Layer

CWCA NA SWA CWRA CWRCA

Best Actions Selected LEFTFIRE LEFTFIRE NOOPNOOPLEFTFIRE

Agents

Figure 6: State representation. The heatmaps are generated using Grad-CAM (Selvaraju et al.,
2016) and the attended feature maps are generated via element-wise summation between the atten-
tion maps and the feature maps at the first CNN layer. The attended feature map of the NA agent
(i.e., the baseline agent) is blank because it does not contain any self-attention module. The arti-
facts created by the self-attention modules are most noticeable in the attended feature maps of the
CWRCA agent where horizontal and vertical bars can be observed. We hypothesize that these arti-
facts could slow down the learning process of the CWRCA agent because the agent needs to learn
to disentangle patterns that are naturally present in the game scene and created by the self-attention
modules. The heatmaps and the attended feature maps of all observations are provided in Appendix
G.

State Representation To visualize the state representation and its correlation with the agent’s
behavior, we make use of the Grad-CAM (Selvaraju et al., 2016) to generate the gradient-weighted
feature maps (denoted as heatmaps) at the first and the second CNN layers where the gradient is
back-propagated from the logit of the ‘best’ action selected by the agent. To visualize the effect of
self-attention modules in the feature space, we extract the attended feature maps F̂1 (as indicated
in Figure 1) which are the element-wise sum of the attention maps Ŷ and the feature maps F1

generated at the first CNN layer. To better understand the feature extraction process, 10 unique sets
of observations are selected using a random policy and fed into the trained agents to retrieve the
heatmaps and the attended feature maps. In favor of simplicity, we pick one set of observations
and organize corresponding heatmaps and attended feature maps from each agent in Figure 6. The
observations comprise four consecutive frames that depict the ball’s movement from the center to
the bottom right of the screen where the agent is located at the top right corner. In this situation, a
human player would start to move the paddle down, i.e., pick the action ‘LEFT’ or ‘LEFTFIRE’ to
catch the ball to avoid losing the score. Looking at the heatmaps at the first CNN layer and the best
action selected by each agent, all agents could highlight the state information including the ball, the
paddles, and the walls except for the CWRA agent which focused more on the walls. The difference
in the heatmap is likely caused by the less optimal action chosen by the CWRA agent in the sense
that ‘doing nothing’ at this moment will probably lead to a score loss later. It is counter-intuitive
that the CWRCA agent chose the same action ‘NOOP’ but with the ‘right’ state representation.
This implies that the CWRCA agent may not have fully grasped the correct correlation between the
optimal action and the current state.

Based on the attended feature maps, the SWA and the CWRA agents focused more on the walls
whereas the CWCA agent paid equal attention to all the key objects in the scene. An interesting
phenomenon observed is the creation of artifacts (patterns not naturally present in the game scene)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

from the self-attention modules. Different self-attention modules seem to create different patterns
of artifacts according to their dot product operations. The artifacts created by the CWCA mod-
ule resemble a horizontal bar (like walls) whereas artifacts created by the SWA module resemble
multiple vertical bars (like ‘transposed’ walls). Likewise, artifacts created by the CWRCA module
contain both horizontal and vertical patterns. We notice that such artifacts seem to be present in
the heatmaps of the second CNN layer as well, especially for the SWA and CWRCA models. It is
shown that self-attention modules are capable of creating various patterns of artifacts based on the
game scenes and the artifacts could behave like a double-edged sword in the sense that they can in-
fluence an agent’s learning both positively (e.g., when artifacts overlay with the actual features) and
negatively (e.g., when artifacts ambiguate the state representation). In the context of Pong, vertical
artifacts seem to do more harm to the learning likely because the model has to learn to disambiguate
between the artifacts and the actual paddles and walls. The negative impact of these vertical artifacts
is manifested by the slower learning curves of both SWA and CWRCA models as shown in Figure
5b. Nevertheless, the introduced artifacts could promote exploration in the way that the agent takes
more random actions because of the ambiguity and randomness in the state representation. This can
be a good trait when solving hard-exploration games like Montezuma’s Revenge and Hero (Kaptur-
owski et al., 2022) where the CWRCA agent obtained a higher mean evaluation score as depicted in
Appendix D.

Table 1: Mean standard deviation of actor logits.

Types of agents CWCA NA SWA CWRA CWRCA

σ̄ of actor logits 4.0 2.91 4.29 2.65 2.65

Exploration Following the same setup we have for the state representation study, we evaluate the
degree of exploration based on the distributions of the logits of the actor network (a.k.a. the actor
logits). Particularly in the context of PPO, the actions are sampled from a multinomial distribution,
and the determinism of the action selection process depends on the distribution of the actor logits.
For example, when logits are more evenly distributed (with lower variance), the action selection
process becomes more random. Conversely, as the variance among logits increases, resulting in a
more peaked distribution, the action selection process becomes more deterministic. In this study, we
provide a simple and effective metric, i.e., the mean standard deviation of the actor logits to evaluate
the degree of randomness of the policy. Specifically, for each agent, we compute the standard
deviation of the actor logits per observation and then calculate the mean standard deviation over 10
sets of randomly selected observations. As depicted in Table 1, the CWRA and the CWRCA agents
have the lowest mean standard deviation scores implying that these two agents are more exploratory
than other agents at the three million time step. This could explain why both agents chose the less
optimal action ‘NOOP’ as illustrated in Figure 6. Based on our observations from the interpretability
study, it is evident that the inductive biases of the self-attention modules can influence the agent’s
sample efficiency in terms of state representation and exploration.

6 CONCLUSION

In this research, we investigated the fundamental operation of the self-attention mechanism in visual-
based DRL settings. Specifically, we designed various self-attention modules by permuting the di-
mensions where the scaled dot-product operation is applied. We integrated the proposed designs
with the PPO algorithm and evaluated their sample efficiency using the ALE benchmark. Our re-
sults indicate that different self-attention modules affect the agent’s learning process differently,
primarily due to the unique inductive bias of each self-attention module and the game mechanics.
To understand how self-attention modules influence the sample efficiency of an agent, we perform
an interpretability study through the lens of state representation and exploration. Our initial obser-
vations revealed that self-attention modules can generate artifacts that subtly influence the interplay
between feature extraction, action selection, and reward collection. We believe that this work has
made certain contributions to the ongoing efforts in optimizing DRL architectures, offering insights
into the mechanisms that can enhance their performance in the low-data regime.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In the future, self-attention modules proposed in this work could be integrated and evaluated with
other DRL algorithms and frameworks such as value-based RL algorithms and model-based RL
respectively. It could also be interesting to combine various self-attention modules adaptively, es-
pecially in the context where the environment dynamics are unknown. Another promising research
direction would be designing new self-attention or hybrid-attention mechanisms to enable more ef-
ficient and effective learning agents.

REFERENCES

AF Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Haoqiang Chen, Yadong Liu, Zongtan Zhou, and Ming Zhang. A2c: attention-augmented con-
trastive learning for state representation extraction. Applied Sciences, 10(17):5902, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In Conference on Robot
Learning, pp. 617–629. PMLR, 2018.

Bradley B Doll, Dylan A Simon, and Nathaniel D Daw. The ubiquity of model-based reinforcement
learning. Current opinion in neurobiology, 22(6):1075–1081, 2012.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International con-
ference on machine learning, pp. 3061–3071. PMLR, 2020.

Zachary Fernandes, Ethan Joseph, Dean Vogel, and Mei Si. Self-attention for visual reinforcement
learning. In 2023 IEEE Conference on Games (CoG), pp. 1–8. IEEE, 2023.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al.
An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning,
11(3-4):219–354, 2018.

Jörg KH Franke, Gregor Köhler, André Biedenkapp, and Frank Hutter. Sample-efficient automated
deep reinforcement learning. arXiv preprint arXiv:2009.01555, 2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance.
Mathematical Finance, 33(3):437–503, 2023.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on
pattern analysis and machine intelligence, 45(1):87–110, 2022.

Hangkai Hu, Shiji Song, and Gao Huang. Self-attention-based temporary curiosity in reinforcement
learning exploration. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(9):
5773–5784, 2019.

Yuh-Jong Hu and Shang-Jen Lin. Deep reinforcement learning for optimizing finance portfolio
management. In 2019 amity international conference on artificial intelligence (AICAI), pp. 14–
20. IEEE, 2019.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakićević, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. arXiv preprint
arXiv:2209.07550, 2022.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Hao Liu, Richard Socher, and Caiming Xiong. Taming maml: Efficient unbiased meta-
reinforcement learning. In International conference on machine learning, pp. 4061–4071. PMLR,
2019.

Ruo-Ze Liu, Haifeng Guo, Xiaozhong Ji, Yang Yu, Zhen-Jia Pang, Zitai Xiao, Yuzhou Wu, and
Tong Lu. Efficient reinforcement learning for starcraft by abstract forward models and transfer
learning. IEEE Transactions on Games, 14(2):294–307, 2021.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Anthony Manchin, Ehsan Abbasnejad, and Anton Van Den Hengel. Reinforcement learning with at-
tention that works: A self-supervised approach. In Neural Information Processing: 26th Interna-
tional Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings,
Part V 26, pp. 223–230. Springer, 2019.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. arXiv preprint arXiv:2209.00588, 2022.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Eduardo F Morales, Rafael Murrieta-Cid, Israel Becerra, and Marco A Esquivel-Basaldua. A survey
on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement
learning. Intelligent Service Robotics, 14(5):773–805, 2021.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Tom Schaul. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh,
and Dhruv Batra. Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450, 2016.

Xiangxiang Shen, Chuanhuan Yin, and Xinwen Hou. Self-attention for deep reinforcement learning.
In Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelli-
gence, pp. 71–75, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Benjamin Spector and Serge Belongie. Sample-efficient reinforcement learning through transfer and
architectural priors. arXiv preprint arXiv:1801.02268, 2018.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

12

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Paul E Utgoff. Machine learning of inductive bias, volume 15. Springer Science & Business Media,
2012.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of atten-
tion. arXiv preprint arXiv:2007.02876, 2020.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 1997.

David H Wolpert, William G Macready, et al. No free lunch theorems for search. Technical report,
Citeseer, 1995.

Tianpei Yang, Weixun Wang, Hongyao Tang, Jianye Hao, Zhaopeng Meng, Hangyu Mao, Dong
Li, Wulong Liu, Yingfeng Chen, Yujing Hu, et al. An efficient transfer learning framework
for multiagent reinforcement learning. Advances in neural information processing systems, 34:
17037–17048, 2021.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
aaai conference on artificial intelligence, volume 35, pp. 10674–10681, 2021.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739–5743, 2018.

Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, and Yoshua Bengio. A
consciousness-inspired planning agent for model-based reinforcement learning. Advances in neu-
ral information processing systems, 34:1569–1581, 2021.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NETWORK ARCHITECTURE

CNN Layer H1 CNN Layer H2 State

Observations

Linear Layer L1

State Representation Learning Policy Learning

Actor

Critic

Action 
Distribution 

Value 
Function

Figure 7: Network architecture of PPO (Schulman et al., 2017). The input observations comprise
four consecutive frames of the game-play with each frame having a size of 84× 84. The frames are
processed by the first CNN layer H1 which contains 16 kernels with each kernel having a size of
8× 8 and a stride of 4. The feature maps generated by H1 are subsequently processed by the second
CNN layer H2 which has 32 4 × 4 kernels with a common stride of 2. The feature maps generated
by H2 are then flattened before being passed to the linear layer L1 of size 256. The outputs of L1
are forwarded to the actor network and the critic network for action selection and value estimation
respectively. In this work, all the proposed self-attention modules are inserted between H1 and H2
to investigate their impacts on sample efficiency against the PPO baseline. The ReLU activation
layer (Agarap, 2018) after each CNN and linear layer is not drawn explicitly in this figure.

B HYPERPARAMETERS

Table 2: PPO hyperparameters. α is linearly annealed from 1 to 0 over the entire training period.
We used the default values from the Stable-Baselines3 v2.0.0 (Raffin et al., 2021) for hyperparame-
ters not listed here.

Parameter Value

No. of parallel environments (n envs) 16

Horizon (n steps) 128

No. of epochs (n epochs) 3

Minibatch size 16× 16

Total timesteps (n timesteps) 1e7

Frame skipping 4

Frame stacking 4

Max no. of no-ops 30

Action repeat probability 0

Learning rate 2.5× 10−4 × α

Clipping parameter 0.1× α

Value function coefficient 1

Entropy coefficient 0.01

Seeds 0, 1, 10, 42, 1234

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C PROBABILITY OF IMPROVEMENT

0.55 0.60 0.65 0.70
P(X > Y)

NA

NA

NA

NA
Algorithm X

 SWA

 CWRA

 CWCA

 CWRCA
Algorithm Y

0.4 0.5 0.6
P(X > Y)

SWA

SWA

SWA

SWA
Algorithm X

 NA

 CWRA

 CWCA

 CWRCA
Algorithm Y

0.5 0.6
P(X > Y)

CWRA

CWRA

CWRA

CWRA
Algorithm X

 NA

 SWA

 CWCA

 CWRCA
Algorithm Y

0.4 0.5 0.6
P(X > Y)

CWCA

CWCA

CWCA

CWCA
Algorithm X

 NA

 SWA

 CWRA

 CWRCA
Algorithm Y

0.30 0.35 0.40 0.45
P(X > Y)

CWRCA

CWRCA

CWRCA

CWRCA
Algorithm X

 NA

 SWA

 CWRA

 CWCA
Algorithm Y

Figure 8: Probability of improvement (Agarwal et al., 2021). From top to bottom and from left
to right, we demonstrate algorithm X’s average probability of improvement over the other algo-
rithms where algorithm X is represented by the NA, SWA, CWRA, CWCA, and the CWRCA agent
respectively. Based on the top left sub-figure, the PPO baseline is more likely to outperform any
self-attention models in a randomly selected game based on the mean evaluation scores. However,
the chance of outperforming the CWRA and the CWCA agents by the PPO agent in any game is
much less certain, implying that the self-attention models could perform better in certain games. In
addition, IQM shown in Figure 2 serves as a more robust aggregate metric for sample efficiency.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D PERFORMANCE PER GAME

Table 3: Performance per game. In total, 56 games are evaluated over 10 million time steps across
5 seeds with all games having the ‘NoFrameskip-v4’ suffix in their environment IDs. The sample
mean and standard error are computed using the mean evaluation score over the entire evaluation
period across 5 runs. The ‘winner’ of each game is highlighted in bold based on the highest sample
mean. Although the baseline agent has the highest number of wins, the combined impact of self-
attention models (33 wins) is nontrivial and it is worth investigating how the inductive bias of each
self-attention module influences the performance of the agent in different environments.

Game NA SWA CWRA CWCA CWRCA

Alien 713.25 ± 23.93 783.05 ± 33.57 820.38 ± 55.90 796.17 ± 25.60 761.62 ± 27.09

Amidar 233.81 ± 17.10 194.72 ± 7.87 249.74 ± 18.04 219.80 ± 19.40 258.99 ± 24.00

Assault 1206.73 ± 81.79 1447.24 ± 145.57 1391.12 ± 150.19 1105.14 ± 30.39 1187.06 ± 141.38

Asterix 2190.20 ± 62.24 2115.20 ± 120.97 1850.88 ± 53.40 1881.16 ± 107.32 1751.08 ± 44.01

Asteroids 1694.04 ± 44.22 1613.50 ± 41.29 1519.31 ± 60.69 1540.75 ± 53.98 1515.91 ± 25.78

Atlantis 748152.32 ± 7500.59 706351.92 ± 8465.67 742176.56 ± 7568.71 717543.44 ± 15934.30 687103.60 ± 12713.27

BankHeist 282.67 ± 99.69 271.21 ± 96.26 291.63 ± 71.99 300.24 ± 79.89 289.53 ± 111.95

BattleZone 18500.80 ± 1010.68 15742.40 ± 831.53 17180.80 ± 1230.39 17376.00 ± 1091.82 14099.20 ± 1112.86

BeamRider 2473.49 ± 169.54 2035.45 ± 88.45 2394.04 ± 98.61 2238.17 ± 70.47 2001.04 ± 212.50

Berzerk 744.35 ± 28.95 783.36 ± 29.50 859.44 ± 11.41 738.88 ± 28.79 821.95 ± 30.29

Bowling 37.08 ± 1.39 42.24 ± 3.00 39.27 ± 3.15 43.77 ± 3.17 35.87 ± 2.61

Boxing 32.44 ± 1.67 27.90 ± 4.80 41.50 ± 2.62 44.44 ± 6.78 25.96 ± 3.52

Breakout 49.17 ± 2.54 38.55 ± 1.92 40.71 ± 2.99 42.61 ± 1.84 42.29 ± 5.29

Centipede 3171.62 ± 49.00 3103.86 ± 34.70 3107.74 ± 70.54 2980.11 ± 102.51 3231.28 ± 56.19

ChopperCommand 1795.84 ± 86.32 1614.56 ± 22.34 1909.92 ± 72.07 1609.76 ± 47.24 1536.64 ± 90.13

CrazyClimber 83603.20 ± 2103.07 79674.88 ± 2573.49 82909.68 ± 1900.91 83995.60 ± 2277.56 78799.12 ± 670.93

Defender 13075.88 ± 421.91 12774.72 ± 483.22 12650.36 ± 701.04 15035.48 ± 679.71 14171.84 ± 656.77

DemonAttack 4276.36 ± 148.32 4526.02 ± 245.87 4430.51 ± 376.03 4059.09 ± 63.70 3695.32 ± 103.82

DoubleDunk -6.13 ± 0.31 -6.78 ± 0.32 -6.15 ± 0.22 -6.20 ± 0.29 -6.32 ± 0.14

Enduro 176.80 ± 43.35 162.52 ± 25.48 129.54 ± 32.08 112.26 ± 17.96 106.03 ± 35.66

FishingDerby -70.46 ± 3.11 -78.18 ± 1.37 -72.74 ± 2.99 -66.00 ± 2.19 -71.96 ± 2.20

Freeway 29.23 ± 0.28 28.73 ± 0.43 23.74 ± 4.05 24.33 ± 5.44 23.24 ± 5.20

Frostbite 270.59 ± 2.60 268.18 ± 2.46 279.81 ± 3.50 676.94 ± 364.66 266.51 ± 3.07

Gopher 893.97 ± 21.91 896.82 ± 28.77 954.93 ± 21.44 913.07 ± 18.05 917.46 ± 9.25

Gravitar 328.68 ± 20.12 318.76 ± 18.17 295.28 ± 8.63 299.40 ± 9.79 261.36 ± 8.32

Hero 9045.84 ± 116.65 8435.23 ± 393.62 9153.70 ± 280.52 9071.00 ± 282.13 9877.38 ± 145.04

IceHockey -4.78 ± 0.13 -5.06 ± 0.19 -4.93 ± 0.08 -4.97 ± 0.14 -4.90 ± 0.08

Jamesbond 609.08 ± 88.48 480.32 ± 14.36 693.60 ± 119.26 457.88 ± 14.61 452.44 ± 30.54

Kangaroo 1504.24 ± 272.96 1503.60 ± 181.72 1886.56 ± 291.60 1250.56 ± 103.63 1252.64 ± 292.68

Krull 5537.86 ± 196.97 4970.93 ± 149.33 5189.49 ± 107.28 5763.52 ± 166.26 5095.27 ± 185.98

KungFuMaster 17357.68 ± 700.29 17260.96 ± 1426.21 17050.72 ± 1425.88 17110.80 ± 725.67 13422.16 ± 1048.28

MontezumaRevenge 0.72 ± 0.49 0.40 ± 0.28 0.48 ± 0.18 0.48 ± 0.35 2.16 ± 1.25

MsPacman 772.44 ± 15.97 699.65 ± 10.00 717.33 ± 38.01 686.30 ± 23.43 669.47 ± 8.52

NameThisGame 5176.36 ± 79.77 4668.89 ± 81.98 5116.64 ± 81.12 4812.22 ± 223.28 4493.71 ± 178.70

Phoenix 4200.87 ± 103.45 4206.65 ± 185.15 4194.28 ± 52.70 4367.82 ± 92.50 4106.22 ± 142.62

Pitfall -7.66 ± 1.37 -16.36 ± 5.65 -28.05 ± 11.92 -10.73 ± 3.88 -11.98 ± 1.80

Pong 9.91 ± 0.53 8.32 ± 0.74 7.30 ± 1.60 12.64 ± 0.43 -0.02 ± 4.01

PrivateEye 93.06 ± 1.64 87.12 ± 9.55 88.90 ± 2.55 84.64 ± 2.99 109.90 ± 22.71

Qbert 1594.34 ± 74.58 1228.14 ± 63.00 1467.60 ± 87.12 1425.32 ± 128.60 1128.26 ± 93.87

Riverraid 4098.34 ± 319.24 4464.29 ± 101.54 4548.46 ± 177.25 4468.96 ± 268.44 3822.38 ± 252.04

RoadRunner 17679.60 ± 1207.69 14792.88 ± 1527.42 15625.60 ± 1066.88 15596.96 ± 541.54 13924.72 ± 1252.82

Robotank 15.76 ± 0.87 14.44 ± 0.64 14.27 ± 0.63 13.16 ± 0.64 10.28 ± 0.92

Seaquest 865.14 ± 2.13 845.89 ± 3.02 854.10 ± 3.70 851.44 ± 1.49 843.82 ± 4.34

Skiing -28852.89 ± 549.36 -21709.29 ± 4541.60 -21695.07 ± 4566.52 -17406.93 ± 4598.34 -13266.78 ± 3785.99

Solaris 2344.58 ± 47.87 2332.13 ± 70.77 2199.54 ± 43.66 2278.88 ± 43.55 2337.78 ± 78.62

SpaceInvaders 515.05 ± 8.99 532.38 ± 13.09 504.85 ± 9.32 516.86 ± 16.91 487.15 ± 5.81

StarGunner 8952.08 ± 569.54 8824.72 ± 509.83 9063.12 ± 587.46 9602.56 ± 468.26 8372.16 ± 919.90

Tennis -16.09 ± 2.41 -11.09 ± 1.75 -16.20 ± 1.74 -13.36 ± 2.31 -11.90 ± 0.85

TimePilot 4938.48 ± 148.33 4501.84 ± 154.27 4330.56 ± 194.76 4789.36 ± 145.20 4369.52 ± 190.30

Tutankham 160.79 ± 1.80 160.08 ± 2.57 156.58 ± 2.36 158.20 ± 1.88 156.87 ± 3.24

UpNDown 49361.81 ± 15012.83 35094.31 ± 1432.76 59758.81 ± 17960.40 64822.30 ± 15476.49 23096.82 ± 2146.71

Venture 13.12 ± 4.82 5.28 ± 2.34 8.16 ± 6.26 4.16 ± 2.06 3.68 ± 2.26

VideoPinball 25318.44 ± 287.01 25979.93 ± 654.44 25669.86 ± 885.77 24888.83 ± 899.18 25354.74 ± 833.24

WizardOfWor 3415.92 ± 168.71 3100.56 ± 229.14 3819.76 ± 145.49 3475.28 ± 294.38 3504.88 ± 134.35

YarsRevenge 13977.03 ± 1935.09 13141.56 ± 357.95 10376.39 ± 1936.01 15025.78 ± 523.89 13697.67 ± 582.27

Zaxxon 5381.20 ± 603.69 4293.04 ± 1237.78 5872.40 ± 619.70 6504.00 ± 498.32 5719.60 ± 828.21

No. of wins 23 5 8 14 6

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E GAMES WON BY EACH AGENT

The list of games won by each agent is curated based on the mean performance as shown in Ap-
pendix D. Although the sample mean is calculated from a few runs which presents a certain degree
of uncertainty as indicated by the standard error, we believe that there could exist a subtle correlation
between the inductive bias of each self-attention module and the game mechanics. In other words,
we aim to discover the commonality among all the games won by a particular agent which could
help us understand why such an agent can learn faster in these games but not in others.

Asterix Asteroids Atlantis BattleZone BeamRider Breakout DoubleDunk Enduro

Freeway Gravitar IceHockey KungFuMaster MsPacman NameThisGame Pitfall Qbert

RoadRunner Robotank Seaquest Solaris TimePilot Tutankham Venture

Figure 9: Games won by the NA agent. The NA agent depicted in Appendix A is the PPO baseline
without the self-attention module. The inductive bias of the state representation block primarily
arises from the CNN layers. Overall, there appears to be limited commonality among the games
won by the NA agent, likely due to its broad feature extraction capabilities from CNN.

Assault DemonAttack SpaceInvaders Tennis VideoPinball

Figure 10: Games won by the SWA agent. Compared with the baseline, the SWA agent contains
an additional self-attention module that performs the dot product operation over the row and column
dimensions and repeats it along the channel dimension. Although only 5 games are won by the
SWA agent, it seems that games with more static backgrounds (e.g., no scrolling of the game scene)
and fewer distinctive objects can be ‘taken advantage of’ by the SWA agent. For instance, both
VideoPinball and Tennis feature simpler backgrounds with fewer moving elements.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Alien Berzerk ChopperCommand Gopher Jamesbond Kangaroo Riverraid WizardOfWor

Figure 11: Games won by the CWRA agent. The self-attention module possessed by the CWRA
agent carries out the dot product operation over the channel and row dimensions and repeats it along
the column dimension. We hypothesize that dynamics along the column (width) dimension could be
‘captured and utilized’ by the CWRA module naturally. For example, games with rewarding objects
moving horizontally such as Gopher, and horizontally scrolling games like ChopperCommand and
Jamesbond are won by the CWRA agent.

BankHeist Bowling Boxing CrazyClimber Defender FishingDerby Frostbite

Krull Phoenix Pong StarGunner UpNDown YarsRevenge Zaxxon

Figure 12: Games won by the CWCA agent. In contrast to the CWRA agent, the CWCA module
implements the dot product operation over the channel and column dimension and repeats it along
the row dimension. Intuitively, we assume that dynamics along the row (height) dimension could
be ‘leveraged’ by the CWCA module more effectively. Following this assumption, we observe that
games with rewarding objects moving vertically such as FishingBerby, Krull, and Pong as well as
vertically scrolling games like CrazyClimber, UpNDown, and Zaxxon are won by the CWCA agent.

Amidar Centipede Hero MontezumaRevenge PrivateEye Skiing

Figure 13: Games won by the CWRCA agent. Intending to combine the advantages of the CWRA
and the CWCA modules, the CWRCA agent integrates both modules via an element-wise summa-
tion operation. This could enable it to attend to dynamics along all dimensions. On the one hand,
attending to all dimensions could over-complicate the state representation and the agent may spend
more effort disentangling the patterns which slows down the learning process, like in the case of
the Pong game. On the other hand, attending to all dimensions could encourage exploration due to
the high entropy (e.g., noise) injected into the state space. This could increase the agent’s learning
efficiency, especially in hard-exploration games like Montezuma’s Revenge and Hero.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F LEARNING CURVES PER GAME

0 2 4 6 8 10
200

400

600

800

1000

1200

1400

Alien

0 2 4 6 8 10

100

200

300

400

500

Amidar

0 2 4 6 8 10

500

1000

1500

2000

2500

Assault

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Asterix

0 2 4 6 8 10

1000

1200

1400

1600

1800

2000

2200

2400
Asteroids

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 1e6 Atlantis

0 2 4 6 8 10

0

200

400

600

800

1000

BankHeist

0 2 4 6 8 10

5000

10000

15000

20000

25000

30000
BattleZone

0 2 4 6 8 10

1000

2000

3000

4000

5000

BeamRider

0 2 4 6 8 10
400

500

600

700

800

900

1000

1100

1200

Berzerk

0 2 4 6 8 10

20

30

40

50

60

Bowling

0 2 4 6 8 10

0

20

40

60

80

Boxing

0 2 4 6 8 10

0

20

40

60

80

100

120

Breakout

0 2 4 6 8 10
2000

2500

3000

3500

4000

4500

5000

5500
Centipede

0 2 4 6 8 10

1000

1500

2000

2500

3000

3500
ChopperCommand

0 2 4 6 8 10

20000

40000

60000

80000

100000

120000
CrazyClimber

0 2 4 6 8 10

5000

10000

15000

20000

25000

30000

Defender

0 2 4 6 8 10

0

2000

4000

6000

8000

10000

12000
DemonAttack

0 2 4 6 8 10
−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

DoubleDunk

0 2 4 6 8 10

0

50

100

150

200

250

300

350

400
Enduro

0 2 4 6 8 10

−90

−80

−70

−60

−50

−40

FishingDerby

0 2 4 6 8 10

10

15

20

25

30

Freeway

0 2 4 6 8 10

200

400

600

800

1000

1200

1400

Frostbite

0 2 4 6 8 10

400

600

800

1000

1200

1400

1600
Gopher

0 2 4 6 8 10

100

200

300

400

500

600

700

Gravitar

0 2 4 6 8 10
2000

4000

6000

8000

10000

12000

14000
Hero

0 2 4 6 8 10

−9

−8

−7

−6

−5

−4

−3

−2
IceHockey

0 2 4 6 8 10

0

500

1000

1500

2000

2500

Jamesbond

0 2 4 6 8 10

0

1000

2000

3000

4000

Kangaroo

0 2 4 6 8 10

3000

4000

5000

6000

7000

Krull

0 2 4 6 8 10

5000

10000

15000

20000

25000

30000

KungFuMaster

0 2 4 6 8 10

0

10

20

30

40

50

MontezumaRevenge

0 2 4 6 8 10

400

500

600

700

800

900

1000

1100

1200
MsPacman

0 2 4 6 8 10

2000

3000

4000

5000

6000

7000

NameThisGame

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

Phoenix

0 2 4 6 8 10

−300

−250

−200

−150

−100

−50

0

Pitfall

0 2 4 6 8 10

−20

−10

0

10

20

Pong

0 2 4 6 8 10

−250

0

250

500

750

1000

1250

1500

PrivateEye

0 2 4 6 8 10

500

1000

1500

2000

2500

3000

3500

4000
Qbert

0 2 4 6 8 10

2000

3000

4000

5000

6000

7000

Riverraid

0 2 4 6 8 10
0

5000

10000

15000

20000

25000

RoadRunner

0 2 4 6 8 10

5

10

15

20

25

Robotank

0 2 4 6 8 10

400

500

600

700

800

900

Seaquest

0 2 4 6 8 10

−30000

−25000

−20000

−15000

−10000

Skiing

0 2 4 6 8 10

1500

2000

2500

3000

3500

4000

4500

Solaris

0 2 4 6 8 10

200

300

400

500

600

700

800

900

SpaceInvaders

0 2 4 6 8 10
0

5000

10000

15000

20000

StarGunner

0 2 4 6 8 10

−20

−15

−10

−5

Tennis

0 2 4 6 8 10

3000

4000

5000

6000

7000

8000

TimePilot

0 2 4 6 8 10

80

100

120

140

160

180

200

Tutankham

0 2 4 6 8 10

0

25000

50000

75000

100000

125000

150000

175000

200000

UpNDown

0 2 4 6 8 10

0

20

40

60

80

100

Venture

0 2 4 6 8 10
10000

20000

30000

40000

50000

60000
VideoPinball

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

WizardOfWor

0 2 4 6 8 10
5000

10000

15000

20000

25000

30000

YarsRevenge

0 2 4 6 8 10

0

2000

4000

6000

8000

10000

12000

Zaxxon

SAT
NA
SWA
CWRA
CWCA
CWRCA

Figure 14: Learning curves per game. The solid line indicates the mean performance, while the
shaded region represents the 95% confidence interval over 5 runs. The term ‘SAT’ in the legend
field stands for Self-Attention Type which is detailed in Section 4.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G STATE REPRESENTATION AND EXPLORATION

1

2

3

4

5

6

7

8

9

10

Figure 15: 10 sets of random observations based on the Pong game. Each set of observations
comprises 4 consecutive frames and all sets of observations are generated by a random policy. The
seventh set of observations is used in the interpretability study.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1

2

3

4

5

6

7

8

9

10

CWCA NA SWA CWRA CWRCA

Figure 16: 10 sets of heatmaps at the first CNN layer based on the Pong game. Each row pictures
the heatmaps of all agents at the first CNN layer based on the observations in Figure 15 and the best
actions in Table 4. The computation of the heatmap is illustrated in Section 5.3. In general, all
agents can correlate the key objects in the scene with their actions. The SWA and the CWRA agents
tend to highlight the walls more often than other agents.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1

2

3

4

5

6

7

8

9

10

CWCA SWA CWRA CWRCA

Figure 17: 10 sets of attended feature maps based on the Pong game. Each row depicts the at-
tended feature maps of all self-attention-enabled agents based on the observations in Figure 15. It
can be seen that different self-attention modules can create different artifacts. The artifacts created
by the SWA module resemble vertical bars whereas artifacts generated by the CWCA agent resem-
ble horizontal bars. Intuitively, the CWRCA module creates both horizontal and vertical bar-like
artifacts.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1

2

3

4

5

6

7

8

9

10

CWCA NA SWA CWRA CWRCA

Figure 18: 10 sets of heatmaps at the second CNN layer based on the Pong game. A key
distinction between the heatmaps from the first and second CNN layers is the emergence of artifacts
generated by the self-attention modules since the attended feature maps serve as inputs to the second
CNN layer. The presence of the artifacts could play a subtle role in influencing the agent’s learning
efficiency in terms of state representation and exploration which is discussed in Section 5.3.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 4: 10 sets of best actions based on the Pong game. Each row represents the agent’s best
action (deterministic = True) corresponding to the input observations as shown in Figure 15. Model
checkpoints are selected at the 3 million time step as detailed in Section 5.3.

CWCA NA SWA CWRA CWRCA

1 NOOP LEFT FIRE NOOP NOOP

2 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

3 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

4 NOOP LEFTFIRE FIRE RIGHT NOOP

5 LEFT LEFTFIRE LEFTFIRE LEFT LEFTFIRE

6 RIGHT RIGHT RIGHTFIRE RIGHT RIGHT

7 LEFTFIRE LEFTFIRE LEFTFIRE NOOP NOOP

8 LEFT LEFT LEFTFIRE LEFT LEFTFIRE

9 LEFTFIRE LEFTFIRE LEFTFIRE LEFT LEFTFIRE

10 FIRE RIGHT RIGHT NOOP NOOP

24


	Introduction
	Related Work
	Preliminaries
	PPO
	Self-Attention

	Design of Self-Attention Modules
	Experiment
	Experiment Setup
	Results and Analysis
	Interpretability Study

	Conclusion
	Network Architecture
	Hyperparameters
	Probability of Improvement
	Performance per Game
	Games Won by each Agent
	Learning Curves per Game
	State Representation and Exploration

